\qquad
\qquad

1.6 Extra Practice

In Exercises 1-3, use the diagrams.

1. Name a pair of adjacent complementary angles.
2. Name a pair of nonadjacent complementary angles.
3. Name a pair of nonadjacent supplementary angles.

In Exercises 4 and 5, find the angle measure.
4. $\angle 1$ is a complement of $\angle 2$, and $m \angle 2=71^{\circ}$. Find $m \angle 1$.
5. $\angle 3$ is a supplement of $\angle 4$, and $m \angle 4=26.7^{\circ}$. Find $m \angle 3$.

In Exercises 6 and 7, find the measure of each angle.

6. $\angle A B C$ and $\angle C B D$ are supplementary angles, $m \angle A B C=7 x^{\circ}$ and $m \angle C B D=8 x^{\circ}$.
7. $\angle W X Y$ and $\angle Y X Z$ are complementary angles, $m \angle W X Y=(2 x+5)^{\circ}$, and $m \angle Y X Z=(8 x-5)^{\circ}$.

In Exercises 8-11, use the diagram.
8. Identify the linear pair(s) that include $\angle 2$.
9. Identify the linear pair(s) that include $\angle 8$.
10. Are $\angle 6$ and $\angle 8$ vertical angles? Explain your reasoning.
11. Are $\angle 7$ and $\angle 9$ vertical angles? Explain your reasoning.

In Exercises 12-14, write and solve an algebraic equation to find the measure of each angle described.
12. The measure of an angle is 9° more than twice its complement.
13. Two angles form a linear pair. The measure of one angle is four times the measure of the other angle.
14. Two angles form a linear pair. The measure of one angle is 51° more than $\frac{1}{2}$ the measure of the other angle.

In Exercises 15 and 16, tell whether the statement is always, sometimes, or never true. Explain your reasoning.
15. The sum of the measures of a linear pair of angles is 90°.
16. The sum of the measures of a pair of vertical angles is 180°.

