1.6 Extra Practice

In Exercises 1-3, use the diagrams.

- 1. Name a pair of adjacent complementary angles.
- 2. Name a pair of nonadjacent complementary angles.
- 3. Name a pair of nonadjacent supplementary angles.

In Exercises 4 and 5, find the angle measure.

- **4.** $\angle 1$ is a complement of $\angle 2$, and $m\angle 2 = 71^{\circ}$. Find $m\angle 1$.
- **5.** $\angle 3$ is a supplement of $\angle 4$, and $m\angle 4 = 26.7^{\circ}$. Find $m\angle 3$.

In Exercises 6 and 7, find the measure of each angle.

- **6.** $\angle ABC$ and $\angle CBD$ are supplementary angles, $m\angle ABC = 7x^{\circ}$ and $m\angle CBD = 8x^{\circ}$.
- 7. $\angle WXY$ and $\angle YXZ$ are complementary angles, $m\angle WXY = (2x + 5)^{\circ}$, and $m\angle YXZ = (8x 5)^{\circ}$.

In Exercises 8-11, use the diagram.

- **8.** Identify the linear pair(s) that include $\angle 2$.
- **9.** Identify the linear pair(s) that include $\angle 8$.
- **10.** Are $\angle 6$ and $\angle 8$ vertical angles? Explain your reasoning.
- **11.** Are $\angle 7$ and $\angle 9$ vertical angles? Explain your reasoning.

In Exercises 12–14, write and solve an algebraic equation to find the measure of each angle described.

- **12.** The measure of an angle is 9° more than twice its complement.
- **13.** Two angles form a linear pair. The measure of one angle is four times the measure of the other angle.
- **14.** Two angles form a linear pair. The measure of one angle is 51° more than $\frac{1}{2}$ the measure of the other angle.

In Exercises 15 and 16, tell whether the statement is *always*, *sometimes*, or *never* true. Explain your reasoning.

- **15.** The sum of the measures of a linear pair of angles is 90° .
- **16.** The sum of the measures of a pair of vertical angles is 180°.